

Single-cell Hierarchical Poisson Factorization

Single-cell Hierarchical Poisson Factorization (scHPF) is a tool for de novo
discovery of discrete and continuous expression patterns in single-cell
RNA-sequencing (scRNA-seq).

We find that scHPF’s sparse low-dimensional representations, non-negativity,
and explicit modeling of variable sparsity across genes and cells produces
highly interpretable factors. The algorithm takes genome-wide molecular counts
as input, avoids prior normalization, and has fast, memory-efficient inference
on sparse scRNA-seq datasets.

Algorithmic details, benchmarking against alternative methods, and scHPF’s
application to a spatially sampled high-grade glioma can be found in
our paper at Molecular Systems Biology [https://doi.org/10.15252/msb.20188557].

You can find the software on github [https://www.embopress.org/doi/full/10.15252/msb.20188557].

Setup

	Installation

	Gene lists

Commandline workflow

	scHPF prep
	Basic usage

	Input matrix format

	Whitelisting genes

	Complete options

	scHPF train
	Basic usage

	Input file format

	Debugging

	Complete options

	scHPF score
	Basic usage

	Complete options

Advanced options

	Selecting K
	General comments

	Example workflows

	Example selection criteria

	Projecting data onto a trained model
	Preparing data for projection

	Projecting new data

Misc

	Complete CLI Reference

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

Installation

Environment & Dependencies

scHPF requires Python >= 3.6 and the packages:

	numba (version requirement depends on python version, but will be safe with 0.45, and probably 0.45+)

	scikit-learn

	pandas

	(optional) loompy

The easiest way to setup a python environment for scHPF is with anaconda [https://www.anaconda.com/distribution] (or
its stripped-down version miniconda [https://docs.conda.io/en/latest/miniconda.html]):

conda create -n schpf_p37 python=3.7 scikit-learn numba=0.50 pandas numpy=1.18

for newer anaconda versions
conda activate schpf_p37
XOR older anaconda verstions
source activate schpf_p37

Optional, for using loom files as input to preprocessing
pip install -U loompy

numba/Python compatibility

Certain micro-versions of Python and numba do not play well together, resulting
in segmentation faults and/or horrible performance (at least for the ops scHPF
uses). In our experience, micro-version combos that avoid these issues are
listed below, as well as known-bad combination, but note this is not an
exhaustive list:

	Python 3.7.9
	Compatible numba: 0.45-0.50

DO NOT USE: 0.44 or earlier

	Python 3.7.5 - 3.7.8
	Not tested

	Python 3.7.4
	Compatible numba: 0.44, 0.45

DO NOT USE: 0.43 or earlier

	Python <=3.7.3
	Compatible numba: 0.39, 0.40, 0.44, 0.45

DO NOT USE: 0.41-0.43

Please let me know about any weird errors/slowness you experience so we can
document!

Installing scHPF

Once you have set up the environment, clone simslab/scHPF from github and
install.

git clone git@github.com:simslab/scHPF.git
cd scHPF
pip install .

Test your installation

Highly recommended, as this will catch some annoying problems with python/numba/numpy incompatibilities. From your scHPF home directory:

conda install pytest
pytest

If any tests fail, please get in touch and I’ll be happy to help.

Gene lists

About

We recommend restricting analysis to protein-coding genes, and bundle
premade lists [https://github.com/simslab/scHPF/tree/master/resources] of coding genes for human and mouse with the scHPF code. The
prep CLI command optionally uses these lists to filter input
data. Although ENSEMBL ids are theoretically unambiguous and consistent across
releases (ie stable identifiers [https://useast.ensembl.org/info/genome/stable_ids/index.html]), you may want to generate your own list
from a different annotation (that matches your alignment GENCODE version) or
with different parameters for gene inclusion (eg including lncRNA).

Premade lists

The scHPF code includes tab-delimited lists of ENSEMBL ids and names for genes
with protein coding, T-cell receptor constant, or immunoglobulin constant
biotypes [https://www.gencodegenes.org/pages/biotypes.html] for human and mouse.

Premade lists can be found in the
code’s resources folder [https://github.com/simslab/scHPF/tree/master/resources]:

	Human (GENCODE v24, v29, v31)

	Mouse (GENCODE vM10, vM19)

Format

Example tab-delimited gene list:

ENSG00000186092 OR4F5
ENSG00000284733 OR4F29
ENSG00000284662 OR4F16
ENSG00000187634 SAMD11
ENSG00000188976 NOC2L
ENSG00000187961 KLHL17

By default, the prep command assumes a two-column, tab-delimited text file of
ENSEMBL gene ids and names, and uses the first column (assumed to be ENSEMBL id)
to filter genes. See the
prep command documentation for other options.

Note

ENSEMBL ids may end in a period followed by an unstable version
number (eg ENSG00000186092.6). By default, the prep command ignores anything
after the period. This means [ENS-ID].[VERSION] is equivalent to
[ENS-ID] . See the prep command for other options.

Making custom gene lists

Although ENSEMBL ids aim to be unambiguous and consistent across
releases (ie stable identifiers [https://useast.ensembl.org/info/genome/stable_ids/index.html]), you may want to generate your own list from
a different annotation or with different parameters for gene inclusion.

Example creation script

Reference files of ids and names for genes with with
protein_coding, TR_C_gene, or IG_C_gene biotypes in the GENCODE
main annotation (in this case gencode.v29.annotation.gtf) were generated as follows:

Select genes with feature gene and level 1 or 2
awk '{if($3=="gene" && $0~"level (1|2);"){print $0}}' gencode.v29.annotation.gtf > gencode.v29.annotation.gene_l1l2.gtf

Only include biotypes protein_coding, TR_C_g* and IG_C_g*
awk '{if($12~"TR_C_g" || $12~"IG_C_g" || $12~"protein_coding"){print $0}}' gencode.v29.annotation.gene_l1l2.gtf > gencode.v29.annotation.gene_l1l2.pc_TRC_IGC.gtf

Retrieve ENSEMBL gene id and name
awk '{{OFS="\t"}{gsub(/"/, "", $10); gsub(/;/, "", $10); gsub(/"/, "", $14); gsub(/;/, "", $14); print $10, $14}}' gencode.v29.annotation.gene_l1l2.pc_TRC_IGC.gtf > gencode.v29.annotation.gene_l1l2.pc_TRC_IGC.stripped.txt

Note

For older GENCODE versions, you may need to adjust the field indices in
the third line of code (for example changing all instances of $14 to $16).

scHPF prep

Basic usage

To preprocess genome-wide UMI counts for a typical run, use the command:

scHPF prep -i UMICOUNT_MATRIX -o OUTDIR -m 10 -w WHITELIST

As written, the command prepares a
matrix of molecular counts for training and only includes
genes that are:

	on a whitelist, for example one of the lists of protein
coding genes bundled in the scHPF code’s reference folder
(-w/--whitelist)

	that we observe in at at least 10 cells (-m/--min-cells).

After running this command, OUTDIR should contain a matrix market file,
filtered.mtx, and an ordered list of genes, genes.txt. An optional prefix
argument can be added, which is prepended to to the output file names.

Now we can train the model with the scHPF train utility.

Input matrix format

scHPF prep takes a molecular count matrix for an scRNA-seq experiment
and formats it for training. The input matrix has two allowed formats:

	A whitespace-delimited matrix formatted as follows, with no header:

ENSEMBL_ID GENE_NAME UMICOUNT_CELL0 UMICOUNT_CELL1 ...

	A loom file (see loompy docs [http://loompy.org/]). The loom file must have at least
one of the row attributes Accession or Gene, where Accession
is an ENSEMBL id and Gene is a gene name.

Whitelisting genes

About

We recommend restricting analysis to protein-coding genes. The
-w/--whitelist option removes all genes in the input data that are not
in a two column, tab-delimited text file of ENSEMBL gene ids and names.
Symmetrically, the -b/--blacklist option removes all genes that are in
a file.

Whitelists for human and mouse are provided in the resources folder [https://github.com/simslab/scHPF/tree/rewrite_release/resources], and
details on formatting and custom lists are in the
gene list documentation.

Attention

ENSEMBL ids may end in a period followed by an unstable version
number (eg ENSG00000186092.6). By default, the prep command ignores anything
after the period. This means [ENS-ID].[VERSION] is equivalent to
[ENS-ID]. This behavior can be overwritten with the
--no-split-on-dot flag.

Whitespace-delimited input matrix

For whitespace-delimited UMI-count files, filtering is performed using the input
matrix’s first column (assumed to be a unique identifier) by default, but can be
done with the gene name (next column) using the --filter-by-gene-name flag.
This is useful for data that does not include a gene id.

loom input matrix

For loom files, we filter the loom Accession row attribute against the
whitelist’s ENSEMBLE if Accession is present in the loom’s row attributes,
and filter the loom’s Gene row attribute against the gene name in the
whitelist otherwise.

Complete options

For complete options, see the complete CLI reference or use the
-h option on the command line:

scHPF prep -h

scHPF train

Basic usage

A typical command to train an scHPF model (using data prepared by the
scHPF prep command):

scHPF train -i TRAIN_FILE -o OUTDIR -p PREFIX -k 7 -t 5

This command performs approximate Bayesian inference on scHPF with, in this
instance, seven factors and five different random initializations. scHPF will
automatically select the trial with the lowest negative log-likelihood, and
save the model in the OUTDIR in a serialized joblib [https://scikit-learn.org/stable/modules/model_persistence.html] file.

Input file format

scHPF’s train command accepts two formats:

	Matrix Market (.mtx) files, where rows are cells, columns are genes, and
values are nonzero molecular counts. Matrix market files are output by
the current scHPF prep command.

	Tab-delimited COO matrix coordinates, output by a previous version of the
preprocessing command. These files are essentially the same as .mtx
files, except they do not have a header and are zero indexed.

Debugging

Hint

If you get an error like “Inconsistency detected by ld.so: dl-version.c: 224:
_dl_check_map_versions” and are running numba 0.40.0, try downgrading to
0.39.0.

Hint

If you get an error like “Segmentation fault (core dumped)” and are running
Python 3.7.4, try upgrading numba to version 0.45 or downgrading Python to
3.7.3 python [More details]

Complete options

For complete options, see the complete CLI reference or use the
-h option on the command line:

scHPF train -h

scHPF score

Basic usage

To get gene- and cell-scores in a tab-delimited file, ordered like the genes and
cells in the train file and with a column for each factor:

scHPF score -m MODEL_JOBLIB -o OUTDIR -p PREFIX

To also generate a tab-delimited file of gene names, ranked by gene-score for
each factor:

scHPF score -m MODEL_JOBLIB -o OUTDIR -p PREFIX -g GENE_FILE

GENE_FILE is intended to be the gene.txt file output by the
scHPF prep command, but can in theory be any tab-delimited file where the
number of rows is equal to the number of genes in the scHPF model. The score
command automatically uses the 1st (zero-indexed) column of GENE_FILE (or
the only column if there is only one); however, the column used can be specified
with --name-col.

If OUTDIR is omitted, the command will make a new subdirectory of the
directory containing the model. The new subdirectory will have the same name as
the model file, but without the joblib extension.

The command also outputs files which can be used to
select the number of factors using trained models.

Complete options

For complete options, see the complete CLI reference or use the
-h option on the command line:

scHPF score -h

Selecting K

General comments

The number of factors, K, determines scHPF’s granularity. An appropriate
number of factors depends on both the data being fit and the intended
application of the scHPF model. In our experience, subsequent analyses on cell
scores (eg. UMAP) are stable across a reasonable range of K, while
interpretability (gene scores) can be more K-dependent.

Example workflows

1. Exploratory analysis on a single sample

In some cases, if a user has a single sample, it may be appropriate to increase
or decrease K manually according to the desired resolution. Granularity at
the level of expression programs can be assessed qualitatively using the
per-factor ranked gene lists in ranked_genes.txt (from scHPF score with
the -g option). For example, if genes for two cell types appear in the same
factor, one might increase K. Resolution can also be assessed quantitatively
using
cell type respresentation, or
other quantitative criteria.

When using this approach, we encourage the user to always try at least two
values of K in any direction, as scHPF is multimodal and behavior is not
always monotonic. K in the neighborhood of the number of clusters is often a
good starting point.

2. Consistent choices across multiple models

Applying scHPF separately to multiple partitions (as in [SzaboLevitin2019])
necessitates a uniform procedure for choosing the number of factors. To
maximize interpretability while being quantitative and consistent across
models, we usually train scHPF across a range of K’s for each partition and
select the per-dataset number of factors using a heuristic suitable to our
intended application
(example criteria). An example workflow might be:

	Choose an appropriate selection criteria for the problem at hand
(examples).

	Guess a minimum number of factors, Kmin. Values slightly less than
the number of clusters in the dataset are usually a good starting point
(e.g. Kmin = number of clusters - 2). Guess a maximum number of
factors, Kmax, not worrying too much if we are low since we’ll refine
later (e.g. Kmax = Kmin + 8).

	Train scHPF models for K in
range(Kmin, Kmax +1). Advanced note: I sometimes use a step
size of 2 or 3 on the first pass to check that the range is reasonable,
but recommend a final step of 1 (scHPF is multimodal, so results may not
be monotonic).

	Evaluate the models using the selection criteria from 1. Expand/refine
the range accordingly. For example, if Kmax passes our criteria, we
should increase Kmax.

	Repeat 3-5 as needed.

Example selection criteria

1. Cell type representation

In [Levitin2019], we chose K based on scHPF’s representation of cell types
in the data. Specifically, we selected the smallest K such that every
well-defined cluster was most strongly associated with at least one unique
factor [Levitin2019, Appendix Figure S8] [https://www.embopress.org/action/downloadSupplement?doi=10.15252%2Fmsb.20188557&file=msb188557-sup-0001-Appendix.pdf]. This method is intuitive, and can
work well when many cell types are present, but depends on the quality and
granularity of clustering. It is also difficult to standardize across multiple
models trained on different data.

[image: _images/cell-type-rep-01.png]
Median cell score per factor and cluster in a high-grade glioma for 12,
13, and 14 factors in [Levitin2019]. At 14 factors, all clusters are most
closely associated with at least one unique factor.

Evaluating top gene overlap

[image: _images/k_selection_minifig-01.png]

Hypergeometric -log10 p-value of the maximum pairwise overlap
of the highest scoring genes in each factor for Donor 2 Bone Marrow in
[SzaboLevitin2019] at different values of K.

2. Gene signature overlap

To find common patterns of gene expression across multiple models in
[SzaboLevitin2019], we selected K such that factors in the same model did
not have significant overlap in their top genes (where top genes are defined as
the n highest scoring genes per factor). This reflected our prior that
programs should be distinctive with respect to gene scores, and the further
requirement that models should have similar granularity across datasets with
different levels of complexity.

The scHPF score command automatically produces the file
maximum_overlaps.txt, which contains factors’ maximum pairwise overlap and
corresponding hypergeometric p values at different cutoffs.

For standard significance thresholds and reasonable n, this method can be
quite strict, resulting in lower granularity factorizations for some datasets.
Using cellular resolution or
cell type respresentation may find higher resolution
factorizations in these cases.

3. Cellular resolution

Cellular resolution directly evaluates a model’s granularity by specifying how
many factors, on average, should explain a given portion of a cell’s total cell
scores. We have found it especially useful for datasets where
gene signature overlap is too strict.

We define cellular resolution as the maximum K such that, on average, cells’
n highest scoring factors contain at least r*100 percent of their total
score across all factors. So if we want to find a model where the 3 factors
with the highest score in a cell contain at least 70% of its total score (on
average), n would be 3 and r would be 0.7.

We can evaluate cellular resolution using one of scHPF score’s outputs, a
file called mean_cellscore_fraction.txt (potentially with a prefix). The
file’s two columns, nfactors and mean_cellscore_fraction, represent the
mean fraction of each cell’s total cell score allocated to its top nfactors
factors. If we want to find a model at n =3 and r =0.7 resolution, we
might follow the example workflow above, and select the
largest K such that mean_cellscore_fraction >= 0.7 when nfactors = 3.

Projecting data onto a trained model

Full writeup coming soon. Use the prep-like and project commandline
programs.

Preparing data for projection

For complete options, see the complete CLI reference or
use the -h option on the command line:

scHPF prep-like -h

Projecting new data

For complete options, see the complete CLI reference or
use the -h option on the command line:

scHPF project -h

Complete CLI Reference

scHPF prep

usage: scHPF prep [-h] -i INPUT [-o OUTDIR] [-p PREFIX] [-m MIN_CELLS]
 [-w WHITELIST] [-b BLACKLIST] [-nvc N_VALIDATION_CELLS]
 [-vgid VALIDATION_GROUP_IDS]
 [--validation-max-group-frac VALIDATION_MAX_GROUP_FRAC]
 [--filter-by-gene-name] [--no-split-on-dot]

Named Arguments

	-i, --input

	Input data. Currently accepts either: (1) a whitespace-delimited gene by cell UMI count matrix with 2 leading columns of gene attributes (ENSEMBL_ID and GENE_NAME respectively), or (2) a loom file with at least one of the row attributes Accession or Gene, where Accession is an ENSEMBL id and Gene is the name.

	-o, --outdir

	Output directory. Does not need to exist.

	-p, --prefix

	Prefix for output files. Optional.

Default: “”

	-m, --min-cells

	Minimum number of cells in which we must observe at least one transcript of a gene for the gene to pass filtering. If 0 <min_cells`< 1, sets threshold to be `min_cells * ncells, rounded to the nearest integer. [Default 0.01]

Default: 0.01

	-w, --whitelist

	Tab-delimited file where first column contains ENSEMBL gene ids to accept, and second column contains corresponding gene names. If given, genes not on the whitelist are filtered from the input matrix. Superseded by blacklist. Optional.

Default: “”

	-b, --blacklist

	Tab-delimited file where first column contains ENSEMBL gene ids to exclude, and second column is the corresponding gene name. Only performed if file given. Genes on the blacklist are excluded even if they are also on the whitelist. Optional.

Default: “”

	-nvc, --n-validation-cells

	Number of cells to randomly select for validation.

Default: 0

	-vgid, --validation-group-ids

	Single column file of cell group ids readable with np.readtxt. If –n-validation-cells is > 0, cells will be randomly selected approximately evenly across the groups in this file, under the constraint that at most –validation-min-group-frac * (ncells in group) are selected from every group.

	--validation-max-group-frac

	If -nvc>0 and validation-group-ids is a valid file, at most `validation-min-group-frac`*(ncells in group) cells are selected from each group.

Default: 0.5

	--filter-by-gene-name

	Use gene name rather than ENSEMBL id to filter (with whitelist or blacklist). Useful for datasets where only gene symbols are given. Applies to both whitelist and blacklist. Used by default when input is a loom file (unless there is an Accession attribute in the loom).

Default: False

	--no-split-on-dot

	Don’t split gene symbol or name on period before filtering whitelist and blacklist. We do this by default for ENSEMBL ids.

Default: False

scHPF train

usage: scHPF train [-h] -i INPUT [-o OUTDIR] [-p PREFIX] [-t NTRIALS]
 [-v VALIDATION_CELLS] [-M MAX_ITER] [-m MIN_ITER]
 [-e EPSILON] [-f CHECK_FREQ]
 [--better-than-n-ago BETTER_THAN_N_AGO] [-a A] [-c C]
 [--float32] [-bs BATCHSIZE] [-sl SMOOTH_LOSS] [-bts] [-sa]
 [-rp] [--quiet]
 nfactors

Named Arguments

	-i, --input

	Training data. Expects either the mtx file output by the prep command or a tab-separated tsv file formatted like:CELL_ID GENE_ID UMI_COUNT. In the later case, ids are assumed to be 0 indexed and we assume no duplicates.

	-o, --outdir

	Output directory for scHPF model. Will be created if does not exist.

	-p, --prefix

	Prefix for output files. Optional.

Default: “”

	nfactors

	Number of factors.

	-t, --ntrials

	Number of times to run scHPF, selecting the trial with best loss (on training data unless validation is given). [Default 1]

Default: 1

	-v, --validation-cells

	Cells to use to assess convergence and choose a model. Expects same format as -i/--input. Training data used by default.

	-M, --max-iter

	Maximum iterations. [Default 1000].

Default: 1000

	-m, --min-iter

	Minimum iterations. [Default 30]

Default: 30

	-e, --epsilon

	Minimum percent decrease in loss between checks to continue inference (convergence criteria). [Default 0.001].

Default: 0.001

	-f, --check-freq

	Number of iterations to run between convergence checks. [Default 10].

Default: 10

	--better-than-n-ago

	Stop condition if loss is getting worse. Stops training if loss is worse than better_than_n_ago`*`check-freq training steps ago and getting worse. Normally not necessary to change.

Default: 5

	-a

	Value for hyperparameter a. Setting to -2 will auto-set to 1/sqrt(nfactors)[Default 0.3]

Default: 0.3

	-c

	Value for hyperparameter c. Setting to -2 will auto-set to 1/sqrt(nfactors)[Default 0.3]

Default: 0.3

	--float32

	Use 32-bit floats instead of default 64-bit floats in variational distrubtions

Default: False

	-bs, --batchsize

	Number of cells to use per training round. All cells used if 0. Note that using batches changes the order of updates during inference.

Default: 0

	-sl, --smooth-loss

	Average loss over the last –smooth-loss interations. Intended for when using minibatches, where int(ncells/batchsize) is a reasonable value

Default: 1

	-bts, --beta-theta-simultaneous

	If False (default), compute beta update, then compute theta based on the updated beta. Note that if batching is used, this order is reverse. If True, update both beta and theta based on values from the last training round. The later slows the rate of convergence and sometimes results in better log-likelihoods, but may increase convergence time, especially for large numbers of cells.

Default: False

	-sa, --save-all

	Save all trials

Default: False

	-rp, --reproject

	Reproject data onto fixed global (gene) parameters after convergence, but before model selection. Recommended with batching

Default: False

	--quiet

	Don’t print intermediate llh.

Default: True

scHPF score

usage: scHPF score [-h] -m MODEL [-o OUTDIR] [-p PREFIX] [-g GENEFILE]
 [--name-col NAME_COL]

Named Arguments

	-m, --model

	Saved scHPF model from train command. Should have extension`.joblib`

	-o, --outdir

	Output directory for score files. If not given, a new subdirectory of the dir containing the model will be made with the same name as the model file (without extension)

	-p, --prefix

	Prefix for output files. Optional.

Default: “”

	-g, --genefile

	Create an additional file with gene names ranked by score for each factor. Expects the gene.txt file output by the scHPF prep command or a similarly formatted tab-delimited file without headers. Uses the zero-indexed --name_col’th column as gene names. Optional.

	--name-col

	The zero-indexed column of genefile to use as a gene name when (optionally) ranking genes. If --name_col is greater than the index of --genefile’s last column, it is automatically reset to the last column’s index. [Default 1]

Default: 1

scHPF prep-like

usage: scHPF prep-like [-h] -i INPUT -r REFERENCE -o OUTDIR [-p PREFIX]
 [--by-gene-name] [--no-split-on-dot]

Named Arguments

	-i, --input

	Input data to format. Currently accepts either: (1) a whitespace-delimited gene by cell UMI count matrix with 2 leading columns of gene attributes (ENSEMBL_ID and GENE_NAME respectively), or (2) a loom file with at least one of the row attributes Accession or Gene, where Accession is an ENSEMBL id and Gene is the name.

	-r, --reference

	Two-column tab-delimited file of ENSEMBL ids and gene names to select from input and order like. All genes in reference must be present in input.

	-o, --outdir

	Output directory. Does not need to exist.

	-p, --prefix

	Prefix for output files. Optional.

Default: “”

	--by-gene-name

	Use gene name rather than ENSEMBL id to when matching against reference. Useful for datasets where only gene symbols are given. Used by default when input is a loom file (unless there is an Accession attr in the loom).

Default: False

	--no-split-on-dot

	Don’t split gene symbol or name on period before when matching to reference. We do this by default for ENSEMBL ids.

Default: False

scHPF project

usage: scHPF project [-h] -m MODEL -i INPUT [-o OUTDIR] [-p PREFIX]
 [--recalc-bp] [--max-iter MAX_ITER] [--min-iter MIN_ITER]
 [--epsilon EPSILON] [--check-freq CHECK_FREQ]

Named Arguments

	-m, --model

	The model to project onto.

	-i, --input

	Data to project onto model. Expects either the mtx file output by the prep or prep-like commands or a tab-delimitted tsv file formated like: CELL_ID GENE_ID UMI_COUNT. In the later case, ids are assumed to be 0 indexed and we assume no duplicates.

	-o, --outdir

	Output directory for projected scHPF model. Will be created if does not exist.

	-p, --prefix

	Prefix for output files. Optional.

Default: “”

	--recalc-bp

	Recalculate hyperparameter bp for the new data

Default: False

	--max-iter

	Maximum iterations. [Default 500].

Default: 500

	--min-iter

	Minimum iterations. [Default 10]

Default: 10

	--epsilon

	Minimum percent decrease in loss between checks to continue inference (convergence criteria). [Default 0.001].

Default: 0.001

	--check-freq

	Number of iterations to run between convergence checks. [Default 10].

Default: 10

Changelog

0.4.0

	train-pool for training parallelized at the level of trials rather than
computations

	reproject and save all options during training

	add separate joblib dependency (should be installed w/scikit-learn,
scikit.externals.joblib is deprecated)

0.3.0

	Refactor so loss can be an arbitrary function

	Fix bugs in and expand options for projetion

	prep-like CLI to prepare data for projection onto a trained model

	cellscore fraction file for score CLI

	Verbose option for load_txt

	Update options for validation cells & selection

	Version as an object attribute

	Handle change in scipy API

	new GENCODE files

	(feature request) options to specify a and c from the train CLI

	Documentation with ReadTheDocs

0.2.4

	Emergency patch preprocessing error for loom files. Also fixed an errant test.
Not really enough to justify a new release but fixed a pretty
irritating/embarrassing error.

0.2.3

	fix no split on dot bug

	Max pairwise table + default max pairwise in score

	Note about ld.so error

	Fix max pairwise second greatest bug

	Some integration tests

0.2.2

	partial test suite

	max pairwise test for gene overlap

	faster preprocessing of larage text files

	refactor preprocessing and training control flow out of CLI

	move load and save methods outside of scHPF object

0.2.1

	Slight speedup during inference for Xphi

	Fix bug (occurred first in 0.2.0-alpha) that occurs when genes in
whitespace-delim input to prep that have no counts

0.2.0

Numba implmentation with scikit-learn-like API

0.1.0

	Tensorflow implementation

Index

References

	Levitin2019

	Levitin et al. (2019),
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization,
`Molecular Systems Biology<https://doi.org/10.15252/msb.20188557>`__.

	SzaboLevitin2019

	Szabo, Levitin et al. (2019),
Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease,
Nature Communications<https://doi.org/10.1038/s41467-019-12464-3>.

 nav.xhtml

 Table of Contents

 		
 Single-cell Hierarchical Poisson Factorization

 		
 Installation

 		
 Environment & Dependencies

 		
 numba/Python compatibility

 		
 Installing scHPF

 		
 Test your installation

 		
 Gene lists

 		
 About

 		
 Premade lists

 		
 Format

 		
 Making custom gene lists

 		
 Example creation script

 		
 scHPF prep

 		
 Basic usage

 		
 Input matrix format

 		
 Whitelisting genes

 		
 About

 		
 Whitespace-delimited input matrix

 		
 loom input matrix

 		
 Complete options

 		
 scHPF train

 		
 Basic usage

 		
 Input file format

 		
 Debugging

 		
 Complete options

 		
 scHPF score

 		
 Basic usage

 		
 Complete options

 		
 Selecting K

 		
 General comments

 		
 Example workflows

 		
 1. Exploratory analysis on a single sample

 		
 2. Consistent choices across multiple models

 		
 Example selection criteria

 		
 1. Cell type representation

 		
 2. Gene signature overlap

 		
 3. Cellular resolution

 		
 Projecting data onto a trained model

 		
 Preparing data for projection

 		
 Projecting new data

 		
 Complete CLI Reference

 		
 scHPF prep

 		
 Named Arguments

 		
 scHPF train

 		
 Named Arguments

 		
 scHPF score

 		
 Named Arguments

 		
 scHPF prep-like

 		
 Named Arguments

 		
 scHPF project

 		
 Named Arguments

 		
 Changelog

 		
 0.4.0

 		
 0.3.0

 		
 0.2.4

 		
 0.2.3

 		
 0.2.2

 		
 0.2.1

 		
 0.2.0

 		
 0.1.0

_images/cell-type-rep-01.png
Median k=12
Cell score
3.2
=0.8
=Pericytes
=Endothelial
=Myeloid
=Oligodendrocytes

=Neuroblast-like

. =Cycling
.. =Astrocyte-like

=OPC-like

v or o

1087 31602511
factor

©=
N

Median k=13
Cell score
3.0
I 1.8
=0.6
= Endothelial
=Pericytes

=Oligodendrocytes
=Myeloid

=Cycling
= Astrocyte-like
=OPC-like
=Neuroblast-like
1 Lo
7692415103 8120 11

factor

Median k=14
Cell score
4.0
24
=08
=Pericytes
=Endothelial

=Oligodendrocytes

=Myeloid
=Neuroblast-like
=Cycling

= Astrocyte-like

. =OPC-like
'
9

_images/k_selection_minifig-01.png
-log,, Hypergeom p

6
Select largest K
41 with p >=0.05
2=
._/'\J p=0.05
0+
6 8 10 12

Number of factors (K)

_static/file.png

_static/minus.png

_static/plus.png

