
scHPF
Release 0.5.0

Hanna Mendes Levitin

Nov 09, 2020

SETUP

1 Installation 3

2 Gene lists 5

3 scHPF prep 7

4 scHPF train 9

5 scHPF score 11

6 Selecting K 13

7 Projecting data onto a trained model 17

8 Complete CLI Reference 19

9 Changelog 25

10 Indices and tables 27

i

ii

scHPF, Release 0.5.0

Single-cell Hierarchical Poisson Factorization (scHPF) is a tool for de novo discovery of discrete and continuous
expression patterns in single-cell RNA-sequencing (scRNA-seq).

We find that scHPF’s sparse low-dimensional representations, non-negativity, and explicit modeling of variable spar-
sity across genes and cells produces highly interpretable factors. The algorithm takes genome-wide molecular counts
as input, avoids prior normalization, and has fast, memory-efficient inference on sparse scRNA-seq datasets.

Algorithmic details, benchmarking against alternative methods, and scHPF’s application to a spatially sampled high-
grade glioma can be found in our paper at Molecular Systems Biology.

You can find the software on github.

SETUP 1

https://doi.org/10.15252/msb.20188557
https://www.embopress.org/doi/full/10.15252/msb.20188557

scHPF, Release 0.5.0

2 SETUP

CHAPTER

ONE

INSTALLATION

1.1 Environment & Dependencies

scHPF requires Python >= 3.6 and the packages:

• numba (version requirement depends on python version, but will be safe with 0.45, and probably 0.45+)

• scikit-learn

• pandas

• (optional) loompy

The easiest way to setup a python environment for scHPF is with anaconda (or its stripped-down version miniconda):

conda create -n schpf_p37 python=3.7 scikit-learn numba=0.50 pandas numpy=1.18

for newer anaconda versions
conda activate schpf_p37
XOR older anaconda verstions
source activate schpf_p37

Optional, for using loom files as input to preprocessing
pip install -U loompy

1.1.1 numba/Python compatibility

Certain micro-versions of Python and numba do not play well together, resulting in segmentation faults and/or horrible
performance (at least for the ops scHPF uses). In our experience, micro-version combos that avoid these issues are
listed below, as well as known-bad combination, but note this is not an exhaustive list:

Python 3.7.9 Compatible numba: 0.45-0.50

DO NOT USE: 0.44 or earlier

Python 3.7.5 - 3.7.8 Not tested

Python 3.7.4 Compatible numba: 0.44, 0.45

DO NOT USE: 0.43 or earlier

Python <=3.7.3 Compatible numba: 0.39, 0.40, 0.44, 0.45

DO NOT USE: 0.41-0.43

Please let me know about any weird errors/slowness you experience so we can document!

3

https://www.anaconda.com/distribution
https://docs.conda.io/en/latest/miniconda.html

scHPF, Release 0.5.0

1.2 Installing scHPF

Once you have set up the environment, clone simslab/scHPF from github and install.

git clone git@github.com:simslab/scHPF.git
cd scHPF
pip install .

1.2.1 Test your installation

Highly recommended, as this will catch some annoying problems with python/numba/numpy incompatibilities. From
your scHPF home directory:

conda install pytest
pytest

If any tests fail, please get in touch and I’ll be happy to help.

4 Chapter 1. Installation

CHAPTER

TWO

GENE LISTS

2.1 About

We recommend restricting analysis to protein-coding genes, and bundle premade lists of coding genes for human
and mouse with the scHPF code. The prep CLI command optionally uses these lists to filter input data. Although
ENSEMBL ids are theoretically unambiguous and consistent across releases (ie stable identifiers), you may want to
generate your own list from a different annotation (that matches your alignment GENCODE version) or with different
parameters for gene inclusion (eg including lncRNA).

2.2 Premade lists

The scHPF code includes tab-delimited lists of ENSEMBL ids and names for genes with protein coding, T-cell receptor
constant, or immunoglobulin constant biotypes for human and mouse.

Premade lists can be found in the code’s resources folder:

• Human (GENCODE v24, v29, v31)

• Mouse (GENCODE vM10, vM19)

2.3 Format

Example tab-delimited gene list:

ENSG00000186092 OR4F5
ENSG00000284733 OR4F29
ENSG00000284662 OR4F16
ENSG00000187634 SAMD11
ENSG00000188976 NOC2L
ENSG00000187961 KLHL17

By default, the prep command assumes a two-column, tab-delimited text file of ENSEMBL gene ids and names, and
uses the first column (assumed to be ENSEMBL id) to filter genes. See the prep command documentation for other
options.

Note: ENSEMBL ids may end in a period followed by an unstable version number (eg ENSG00000186092.6). By
default, the prep command ignores anything after the period. This means [ENS-ID].[VERSION] is equivalent to
[ENS-ID] . See the prep command for other options.

5

https://github.com/simslab/scHPF/tree/master/resources
https://useast.ensembl.org/info/genome/stable_ids/index.html
https://www.gencodegenes.org/pages/biotypes.html
https://github.com/simslab/scHPF/tree/master/resources

scHPF, Release 0.5.0

2.4 Making custom gene lists

Although ENSEMBL ids aim to be unambiguous and consistent across releases (ie stable identifiers), you may want
to generate your own list from a different annotation or with different parameters for gene inclusion.

2.4.1 Example creation script

Reference files of ids and names for genes with with protein_coding, TR_C_gene, or IG_C_gene biotypes in
the GENCODE main annotation (in this case gencode.v29.annotation.gtf) were generated as follows:

Select genes with feature gene and level 1 or 2
awk '{if($3=="gene" && $0~"level (1|2);"){print $0}}' gencode.v29.annotation.gtf >
→˓gencode.v29.annotation.gene_l1l2.gtf

Only include biotypes protein_coding, TR_C_g* and IG_C_g*
awk '{if($12~"TR_C_g" || $12~"IG_C_g" || $12~"protein_coding"){print $0}}' gencode.
→˓v29.annotation.gene_l1l2.gtf > gencode.v29.annotation.gene_l1l2.pc_TRC_IGC.gtf

Retrieve ENSEMBL gene id and name
awk '{{OFS="\t"}{gsub(/"/, "", $10); gsub(/;/, "", $10); gsub(/"/, "", $14); gsub(/;/,
→˓ "", $14); print $10, $14}}' gencode.v29.annotation.gene_l1l2.pc_TRC_IGC.gtf >
→˓gencode.v29.annotation.gene_l1l2.pc_TRC_IGC.stripped.txt

Note: For older GENCODE versions, you may need to adjust the field indices in the third line of code (for example
changing all instances of $14 to $16).

6 Chapter 2. Gene lists

https://useast.ensembl.org/info/genome/stable_ids/index.html

CHAPTER

THREE

SCHPF PREP

3.1 Basic usage

To preprocess genome-wide UMI counts for a typical run, use the command:

scHPF prep -i UMICOUNT_MATRIX -o OUTDIR -m 10 -w WHITELIST

As written, the command prepares a matrix of molecular counts for training and only includes genes that are:

• on a whitelist, for example one of the lists of protein coding genes bundled in the scHPF code’s reference folder
(-w/--whitelist)

• that we observe in at at least 10 cells (-m/--min-cells).

After running this command, OUTDIR should contain a matrix market file, filtered.mtx, and an ordered list of
genes, genes.txt. An optional prefix argument can be added, which is prepended to to the output file names.

Now we can train the model with the scHPF train utility.

3.2 Input matrix format

scHPF prep takes a molecular count matrix for an scRNA-seq experiment and formats it for training. The input
matrix has two allowed formats:

1. A whitespace-delimited matrix formatted as follows, with no header:

ENSEMBL_ID GENE_NAME UMICOUNT_CELL0 UMICOUNT_CELL1 ...

2. A loom file (see loompy docs). The loom file must have at least one of the row attributes Accession or Gene,
where Accession is an ENSEMBL id and Gene is a gene name.

3.3 Whitelisting genes

3.3.1 About

We recommend restricting analysis to protein-coding genes. The -w/--whitelist option removes all genes in the
input data that are not in a two column, tab-delimited text file of ENSEMBL gene ids and names. Symmetrically, the
-b/--blacklist option removes all genes that are in a file.

Whitelists for human and mouse are provided in the resources folder, and details on formatting and custom lists are in
the gene list documentation.

7

train-cli.html
http://loompy.org/
https://github.com/simslab/scHPF/tree/rewrite_release/resources

scHPF, Release 0.5.0

Attention: ENSEMBL ids may end in a period followed by an unstable version number (eg
ENSG00000186092.6). By default, the prep command ignores anything after the period. This means [ENS-ID].
[VERSION] is equivalent to [ENS-ID]. This behavior can be overwritten with the --no-split-on-dot
flag.

3.3.2 Whitespace-delimited input matrix

For whitespace-delimited UMI-count files, filtering is performed using the input matrix’s first column (as-
sumed to be a unique identifier) by default, but can be done with the gene name (next column) using the
--filter-by-gene-name flag. This is useful for data that does not include a gene id.

3.3.3 loom input matrix

For loom files, we filter the loom Accession row attribute against the whitelist’s ENSEMBLE if Accession is
present in the loom’s row attributes, and filter the loom’s Gene row attribute against the gene name in the whitelist
otherwise.

3.4 Complete options

For complete options, see the complete CLI reference or use the -h option on the command line:

scHPF prep -h

8 Chapter 3. scHPF prep

CHAPTER

FOUR

SCHPF TRAIN

4.1 Basic usage

A typical command to train an scHPF model (using data prepared by the scHPF prep command):

scHPF train -i TRAIN_FILE -o OUTDIR -p PREFIX -k 7 -t 5

This command performs approximate Bayesian inference on scHPF with, in this instance, seven factors and five
different random initializations. scHPF will automatically select the trial with the lowest negative log-likelihood, and
save the model in the OUTDIR in a serialized joblib file.

4.2 Input file format

scHPF’s train command accepts two formats:

1. Matrix Market (.mtx) files, where rows are cells, columns are genes, and values are nonzero molecular counts.
Matrix market files are output by the current scHPF prep command.

2. Tab-delimited COO matrix coordinates, output by a previous version of the preprocessing command. These
files are essentially the same as .mtx files, except they do not have a header and are zero indexed.

4.3 Debugging

Hint: If you get an error like “Inconsistency detected by ld.so: dl-version.c: 224: _dl_check_map_versions” and are
running numba 0.40.0, try downgrading to 0.39.0.

Hint: If you get an error like “Segmentation fault (core dumped)” and are running Python 3.7.4, try upgrading numba
to version 0.45 or downgrading Python to 3.7.3 python [More details]

9

prep-cli.html
https://scikit-learn.org/stable/modules/model_persistence.html
prep-cli.html

scHPF, Release 0.5.0

4.4 Complete options

For complete options, see the complete CLI reference or use the -h option on the command line:

scHPF train -h

10 Chapter 4. scHPF train

CHAPTER

FIVE

SCHPF SCORE

5.1 Basic usage

To get gene- and cell-scores in a tab-delimited file, ordered like the genes and cells in the train file and with a column
for each factor:

scHPF score -m MODEL_JOBLIB -o OUTDIR -p PREFIX

To also generate a tab-delimited file of gene names, ranked by gene-score for each factor:

scHPF score -m MODEL_JOBLIB -o OUTDIR -p PREFIX -g GENE_FILE

GENE_FILE is intended to be the gene.txt file output by the scHPF prep command, but can in theory be any tab-
delimited file where the number of rows is equal to the number of genes in the scHPF model. The score command
automatically uses the 1st (zero-indexed) column of GENE_FILE (or the only column if there is only one); however,
the column used can be specified with --name-col.

If OUTDIR is omitted, the command will make a new subdirectory of the directory containing the model. The new
subdirectory will have the same name as the model file, but without the joblib extension.

The command also outputs files which can be used to select the number of factors using trained models.

5.2 Complete options

For complete options, see the complete CLI reference or use the -h option on the command line:

scHPF score -h

11

prep-cli.html

scHPF, Release 0.5.0

12 Chapter 5. scHPF score

CHAPTER

SIX

SELECTING K

6.1 General comments

The number of factors, K, determines scHPF’s granularity. An appropriate number of factors depends on both the data
being fit and the intended application of the scHPF model. In our experience, subsequent analyses on cell scores (eg.
UMAP) are stable across a reasonable range of K, while interpretability (gene scores) can be more K-dependent.

6.2 Example workflows

6.2.1 1. Exploratory analysis on a single sample

In some cases, if a user has a single sample, it may be appropriate to increase or decrease K manually according to the
desired resolution. Granularity at the level of expression programs can be assessed qualitatively using the per-factor
ranked gene lists in ranked_genes.txt (from scHPF score with the -g option). For example, if genes for two cell
types appear in the same factor, one might increase K. Resolution can also be assessed quantitatively using cell type
respresentation, or other quantitative criteria.

When using this approach, we encourage the user to always try at least two values of K in any direction, as scHPF is
multimodal and behavior is not always monotonic. K in the neighborhood of the number of clusters is often a good
starting point.

6.2.2 2. Consistent choices across multiple models

Applying scHPF separately to multiple partitions (as in [?]) necessitates a uniform procedure for choosing the number
of factors. To maximize interpretability while being quantitative and consistent across models, we usually train scHPF
across a range of K’s for each partition and select the per-dataset number of factors using a heuristic suitable to our
intended application (example criteria). An example workflow might be:

1. Choose an appropriate selection criteria for the problem at hand (examples).

2. Guess a minimum number of factors, Kmin. Values slightly less than the number of clusters in the dataset are
usually a good starting point (e.g. Kmin = number of clusters - 2). Guess a maximum number of factors, Kmax,
not worrying too much if we are low since we’ll refine later (e.g. Kmax = Kmin + 8).

3. Train scHPF models for K in range(Kmin, Kmax +1). Advanced note: I sometimes use a step size of 2 or 3 on the
first pass to check that the range is reasonable, but recommend a final step of 1 (scHPF is multimodal, so results
may not be monotonic).

4. Evaluate the models using the selection criteria from 1. Expand/refine the range accordingly. For example, if
Kmax passes our criteria, we should increase Kmax.

13

score-cli.html

scHPF, Release 0.5.0

5. Repeat 3-5 as needed.

6.3 Example selection criteria

6.3.1 1. Cell type representation

In [?], we chose K based on scHPF’s representation of cell types in the data. Specifically, we selected the smallest
K such that every well-defined cluster was most strongly associated with at least one unique factor [Levitin2019,
Appendix Figure S8]. This method is intuitive, and can work well when many cell types are present, but depends on
the quality and granularity of clustering. It is also difficult to standardize across multiple models trained on different
data.

Fig. 1: Median cell score per factor and cluster in a high-grade glioma for 12, 13, and 14 factors in [?]. At 14 factors,
all clusters are most closely associated with at least one unique factor.

Evaluating top gene overlap

Hypergeometric -log10 p-value of the maximum pairwise overlap of the highest scoring genes in each factor for
Donor 2 Bone Marrow in [?] at different values of K.

14 Chapter 6. Selecting K

https://www.embopress.org/action/downloadSupplement?doi=10.15252%2Fmsb.20188557&file=msb188557-sup-0001-Appendix.pdf
https://www.embopress.org/action/downloadSupplement?doi=10.15252%2Fmsb.20188557&file=msb188557-sup-0001-Appendix.pdf

scHPF, Release 0.5.0

6.3.2 2. Gene signature overlap

To find common patterns of gene expression across multiple models in [?], we selected K such that factors in the same
model did not have significant overlap in their top genes (where top genes are defined as the n highest scoring genes
per factor). This reflected our prior that programs should be distinctive with respect to gene scores, and the further
requirement that models should have similar granularity across datasets with different levels of complexity.

The scHPF score command automatically produces the file maximum_overlaps.txt, which contains factors’ maxi-
mum pairwise overlap and corresponding hypergeometric p values at different cutoffs.

For standard significance thresholds and reasonable n, this method can be quite strict, resulting in lower granularity
factorizations for some datasets. Using cellular resolution or cell type respresentation may find higher resolution
factorizations in these cases.

6.3.3 3. Cellular resolution

Cellular resolution directly evaluates a model’s granularity by specifying how many factors, on average, should explain
a given portion of a cell’s total cell scores. We have found it especially useful for datasets where gene signature overlap
is too strict.

We define cellular resolution as the maximum K such that, on average, cells’ n highest scoring factors contain at least
r*100 percent of their total score across all factors. So if we want to find a model where the 3 factors with the highest
score in a cell contain at least 70% of its total score (on average), n would be 3 and r would be 0.7.

We can evaluate cellular resolution using one of scHPF score’s outputs, a file called mean_cellscore_fraction.txt
(potentially with a prefix). The file’s two columns, nfactors and mean_cellscore_fraction, represent the mean fraction
of each cell’s total cell score allocated to its top nfactors factors. If we want to find a model at n =3 and r =0.7
resolution, we might follow the example workflow above, and select the largest K such that mean_cellscore_fraction
>= 0.7 when nfactors = 3.

6.3. Example selection criteria 15

score-cli.html
score-cli.html

scHPF, Release 0.5.0

16 Chapter 6. Selecting K

CHAPTER

SEVEN

PROJECTING DATA ONTO A TRAINED MODEL

Full writeup coming soon. Use the prep-like and project commandline programs.

7.1 Preparing data for projection

For complete options, see the complete CLI reference or use the -h option on the command line:

scHPF prep-like -h

7.2 Projecting new data

For complete options, see the complete CLI reference or use the -h option on the command line:

scHPF project -h

17

scHPF, Release 0.5.0

18 Chapter 7. Projecting data onto a trained model

CHAPTER

EIGHT

COMPLETE CLI REFERENCE

8.1 scHPF prep

usage: scHPF prep [-h] -i INPUT [-o OUTDIR] [-p PREFIX] [-m MIN_CELLS]
[-w WHITELIST] [-b BLACKLIST] [-nvc N_VALIDATION_CELLS]
[-vgid VALIDATION_GROUP_IDS]
[--validation-max-group-frac VALIDATION_MAX_GROUP_FRAC]
[--filter-by-gene-name] [--no-split-on-dot]

8.1.1 Named Arguments

-i, --input Input data. Currently accepts either: (1) a whitespace-delimited gene by cell
UMI count matrix with 2 leading columns of gene attributes (ENSEMBL_ID
and GENE_NAME respectively), or (2) a loom file with at least one of the row
attributes Accession or Gene, where Accession is an ENSEMBL id and Gene is
the name.

-o, --outdir Output directory. Does not need to exist.

-p, --prefix Prefix for output files. Optional.

Default: “”

-m, --min-cells Minimum number of cells in which we must observe at least one transcript of
a gene for the gene to pass filtering. If 0 <min_cells`< 1, sets threshold to be
`min_cells * ncells, rounded to the nearest integer. [Default 0.01]

Default: 0.01

-w, --whitelist Tab-delimited file where first column contains ENSEMBL gene ids to accept,
and second column contains corresponding gene names. If given, genes not on
the whitelist are filtered from the input matrix. Superseded by blacklist. Optional.

Default: “”

-b, --blacklist Tab-delimited file where first column contains ENSEMBL gene ids to exclude,
and second column is the corresponding gene name. Only performed if file given.
Genes on the blacklist are excluded even if they are also on the whitelist. Op-
tional.

Default: “”

-nvc, --n-validation-cells Number of cells to randomly select for validation.

Default: 0

19

scHPF, Release 0.5.0

-vgid, --validation-group-ids Single column file of cell group ids readable with np.readtxt. If –n-
validation-cells is > 0, cells will be randomly selected approximately evenly
across the groups in this file, under the constraint that at most –validation-min-
group-frac * (ncells in group) are selected from every group.

--validation-max-group-frac If -nvc>0 and validation-group-ids is a valid file, at most `validation-
min-group-frac`*(ncells in group) cells are selected from each group.

Default: 0.5

--filter-by-gene-name Use gene name rather than ENSEMBL id to filter (with whitelist or blacklist).
Useful for datasets where only gene symbols are given. Applies to both whitelist
and blacklist. Used by default when input is a loom file (unless there is an Ac-
cession attribute in the loom).

Default: False

--no-split-on-dot Don’t split gene symbol or name on period before filtering whitelist and blacklist.
We do this by default for ENSEMBL ids.

Default: False

8.2 scHPF train

usage: scHPF train [-h] -i INPUT [-o OUTDIR] [-p PREFIX] [-t NTRIALS]
[-v VALIDATION_CELLS] [-M MAX_ITER] [-m MIN_ITER]
[-e EPSILON] [-f CHECK_FREQ]
[--better-than-n-ago BETTER_THAN_N_AGO] [-a A] [-c C]
[--float32] [-bs BATCHSIZE] [-sl SMOOTH_LOSS] [-bts] [-sa]
[-rp] [--quiet]
nfactors

8.2.1 Named Arguments

-i, --input Training data. Expects either the mtx file output by the prep command or a tab-
separated tsv file formatted like:CELL_ID GENE_ID UMI_COUNT. In the later
case, ids are assumed to be 0 indexed and we assume no duplicates.

-o, --outdir Output directory for scHPF model. Will be created if does not exist.

-p, --prefix Prefix for output files. Optional.

Default: “”

nfactors Number of factors.

-t, --ntrials Number of times to run scHPF, selecting the trial with best loss (on training data
unless validation is given). [Default 1]

Default: 1

-v, --validation-cells Cells to use to assess convergence and choose a model. Expects same format as
-i/--input. Training data used by default.

-M, --max-iter Maximum iterations. [Default 1000].

Default: 1000

20 Chapter 8. Complete CLI Reference

scHPF, Release 0.5.0

-m, --min-iter Minimum iterations. [Default 30]

Default: 30

-e, --epsilon Minimum percent decrease in loss between checks to continue inference (conver-
gence criteria). [Default 0.001].

Default: 0.001

-f, --check-freq Number of iterations to run between convergence checks. [Default 10].

Default: 10

--better-than-n-ago Stop condition if loss is getting worse. Stops training if loss is worse than
better_than_n_ago`*`check-freq training steps ago and getting worse. Normally
not necessary to change.

Default: 5

-a Value for hyperparameter a. Setting to -2 will auto-set to 1/sqrt(nfactors)[Default
0.3]

Default: 0.3

-c Value for hyperparameter c. Setting to -2 will auto-set to 1/sqrt(nfactors)[Default
0.3]

Default: 0.3

--float32 Use 32-bit floats instead of default 64-bit floats in variational distrubtions

Default: False

-bs, --batchsize Number of cells to use per training round. All cells used if 0. Note that using
batches changes the order of updates during inference.

Default: 0

-sl, --smooth-loss Average loss over the last –smooth-loss interations. Intended for when using
minibatches, where int(ncells/batchsize) is a reasonable value

Default: 1

-bts, --beta-theta-simultaneous If False (default), compute beta update, then compute theta based on
the updated beta. Note that if batching is used, this order is reverse. If True,
update both beta and theta based on values from the last training round. The later
slows the rate of convergence and sometimes results in better log-likelihoods, but
may increase convergence time, especially for large numbers of cells.

Default: False

-sa, --save-all Save all trials

Default: False

-rp, --reproject Reproject data onto fixed global (gene) parameters after convergence, but before
model selection. Recommended with batching

Default: False

--quiet Don’t print intermediate llh.

Default: True

8.2. scHPF train 21

scHPF, Release 0.5.0

8.3 scHPF score

usage: scHPF score [-h] -m MODEL [-o OUTDIR] [-p PREFIX] [-g GENEFILE]
[--name-col NAME_COL]

8.3.1 Named Arguments

-m, --model Saved scHPF model from train command. Should have extension`.joblib`

-o, --outdir Output directory for score files. If not given, a new subdirectory of the dir con-
taining the model will be made with the same name as the model file (without
extension)

-p, --prefix Prefix for output files. Optional.

Default: “”

-g, --genefile Create an additional file with gene names ranked by score for each factor. Expects
the gene.txt file output by the scHPF prep command or a similarly formatted tab-
delimited file without headers. Uses the zero-indexed --name_col’th column
as gene names. Optional.

--name-col The zero-indexed column of genefile to use as a gene name when (optionally)
ranking genes. If --name_col is greater than the index of --genefile’s last
column, it is automatically reset to the last column’s index. [Default 1]

Default: 1

8.4 scHPF prep-like

usage: scHPF prep-like [-h] -i INPUT -r REFERENCE -o OUTDIR [-p PREFIX]
[--by-gene-name] [--no-split-on-dot]

8.4.1 Named Arguments

-i, --input Input data to format. Currently accepts either: (1) a whitespace-delimited gene by
cell UMI count matrix with 2 leading columns of gene attributes (ENSEMBL_ID
and GENE_NAME respectively), or (2) a loom file with at least one of the row
attributes Accession or Gene, where Accession is an ENSEMBL id and Gene is
the name.

-r, --reference Two-column tab-delimited file of ENSEMBL ids and gene names to select from
input and order like. All genes in reference must be present in input.

-o, --outdir Output directory. Does not need to exist.

-p, --prefix Prefix for output files. Optional.

Default: “”

--by-gene-name Use gene name rather than ENSEMBL id to when matching against reference.
Useful for datasets where only gene symbols are given. Used by default when
input is a loom file (unless there is an Accession attr in the loom).

Default: False

22 Chapter 8. Complete CLI Reference

scHPF, Release 0.5.0

--no-split-on-dot Don’t split gene symbol or name on period before when matching to reference.
We do this by default for ENSEMBL ids.

Default: False

8.5 scHPF project

usage: scHPF project [-h] -m MODEL -i INPUT [-o OUTDIR] [-p PREFIX]
[--recalc-bp] [--max-iter MAX_ITER] [--min-iter MIN_ITER]
[--epsilon EPSILON] [--check-freq CHECK_FREQ]

8.5.1 Named Arguments

-m, --model The model to project onto.

-i, --input Data to project onto model. Expects either the mtx file output by the prep or prep-
like commands or a tab-delimitted tsv file formated like: CELL_ID GENE_ID
UMI_COUNT. In the later case, ids are assumed to be 0 indexed and we assume
no duplicates.

-o, --outdir Output directory for projected scHPF model. Will be created if does not exist.

-p, --prefix Prefix for output files. Optional.

Default: “”

--recalc-bp Recalculate hyperparameter bp for the new data

Default: False

--max-iter Maximum iterations. [Default 500].

Default: 500

--min-iter Minimum iterations. [Default 10]

Default: 10

--epsilon Minimum percent decrease in loss between checks to continue inference (conver-
gence criteria). [Default 0.001].

Default: 0.001

--check-freq Number of iterations to run between convergence checks. [Default 10].

Default: 10

8.5. scHPF project 23

scHPF, Release 0.5.0

24 Chapter 8. Complete CLI Reference

CHAPTER

NINE

CHANGELOG

9.1 0.4.0

• train-pool for training parallelized at the level of trials rather than computations

• reproject and save all options during training

• add separate joblib dependency (should be installed w/scikit-learn, scikit.externals.joblib is deprecated)

9.2 0.3.0

• Refactor so loss can be an arbitrary function

• Fix bugs in and expand options for projetion

• prep-like CLI to prepare data for projection onto a trained model

• cellscore fraction file for score CLI

• Verbose option for load_txt

• Update options for validation cells & selection

• Version as an object attribute

• Handle change in scipy API

• new GENCODE files

• (feature request) options to specify a and c from the train CLI

• Documentation with ReadTheDocs

9.3 0.2.4

• Emergency patch preprocessing error for loom files. Also fixed an errant test. Not really enough to justify a new
release but fixed a pretty irritating/embarrassing error.

25

scHPF, Release 0.5.0

9.4 0.2.3

• fix no split on dot bug

• Max pairwise table + default max pairwise in score

• Note about ld.so error

• Fix max pairwise second greatest bug

• Some integration tests

9.5 0.2.2

• partial test suite

• max pairwise test for gene overlap

• faster preprocessing of larage text files

• refactor preprocessing and training control flow out of CLI

• move load and save methods outside of scHPF object

9.6 0.2.1

• Slight speedup during inference for Xphi

• Fix bug (occurred first in 0.2.0-alpha) that occurs when genes in whitespace-delim input to prep that have no
counts

9.7 0.2.0

Numba implmentation with scikit-learn-like API

9.8 0.1.0

• Tensorflow implementation

26 Chapter 9. Changelog

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

27

	Installation
	Gene lists
	scHPF prep
	scHPF train
	scHPF score
	Selecting K
	Projecting data onto a trained model
	Complete CLI Reference
	Changelog
	Indices and tables

